metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(μ -3-hydroxybenzoato- κ^3 O,O':O)bis-[aqua(3-hydroxybenzoato- κ^2 O,O')(1,10phenanthroline- $\kappa^2 N$, N')lead(II)] monohydrate

Xiao-Peng Xuan,* Pei-Zheng Zhao and Shu-Xia Zhang

Department of Chemistry, Henan Normal University, Xinxiang 453007, People's Republic of China

Correspondence e-mail: xpxuan@henannu.edu.cn

Received 2 November 2007; accepted 2 December 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.022; wR factor = 0.050; data-toparameter ratio = 13.1.

In the centrosymmetric binuclear title complex. $[Pb_2(C_7H_5O_3)_4(C_{12}H_8N_2)_2(H_2O)_2] \cdot H_2O$, each Pb atom is eight-coordinated in a PbO₆N₂ environment by two N atoms from the 1,10-phenanthroline (phen) ligand, five carboxylate O atoms from four 3-hydroxybenzoate anions and one O atom from the coordinated water molecule in a distorted bicapped trigonal-prismatic geometry. The benzoate groups coordinate each Pb^{II} atom in two different ways. Two benzoate ions behave as bidentate ligands to the Pb atom, and another benzoate ion bridges the Pb atoms, forming a binuclear structure. The dimeric units are packed via $O-H \cdots O$ hydrogen bonds and π - π interactions between the aromatic rings of neighboring molecules, with centroid-centroid distances of 3.552 (2) and 3.641 (2) Å.

Related literature

For related structures, see: Li & Yang (2004); Mahjoub & Morsali (2002); Xuan et al. (2007); Zhu et al. (2004); For information on the coordination chemistry of lead, see: Shimoni-Livny et al. (1998).

Experimental

Crystal data

$[Pb_{2}(C_{2}H_{2}O_{2})/(C_{2}AH_{2}N_{2})_{2}(H_{2}O_{2})_{2}]_{2}$	$\beta = 82.762.(2)^{\circ}$
H ₂ O	$\gamma = 84.701 \ (2)^{\circ}$
$M_r = 1377.30$	V = 1189.2 (4) Å ³
Triclinic, P1	Z = 1
a = 8.5639 (16) Å	Mo $K\alpha$ radiation
b = 12.152(2)Å	$\mu = 7.15 \text{ mm}^{-1}$
c = 12.979 (3) Å	T = 293 (2) K
$\alpha = 62.652 \ (1)^{\circ}$	$0.17 \times 0.15 \times 0.11 \text{ mm}$

Data collection

Bruker SMART CCD area-detector 8820 measured reflections diffractometer 4352 independent reflections Absorption correction: multi-scan 4009 reflections with $I > 2\sigma(I)$ (SADABS: Bruker, 1997) $R_{\rm int} = 0.022$ $T_{\min} = 0.369, T_{\max} = 0.512$ (expected range = 0.328 - 0.456)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.022$	12 restraints
$wR(F^2) = 0.050$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 1.06 \ {\rm e} \ {\rm \AA}^{-3}$
4352 reflections	$\Delta \rho_{\rm min} = -0.72 \text{ e} \text{ Å}^{-3}$
333 parameters	

Table 1

T.L.L. 0

Selected bond lengths (Å).

 Pb1_01	2 472 (2)	Pb1_05	2 720 (2)
Pb1 - N1	2.551(2)	Pb1-O6	2.815 (2)
Pb1-N2	2.585 (3)	$Pb1 - O6^{i}$	2.880 (2)
Pb1-O2	2.630 (2)	Pb1-O7	2.914 (4)

Symmetry code: (i) -x, -y, -z + 1.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H3···O5 ⁱⁱ	0.82	1.84	2.658 (3)	176
O4−H4···O1 ⁱⁱⁱ	0.82	1.93	2.738 (3)	167
$O7 - H2W \cdots O8^{iv}$	0.83	2.24	2.932 (6)	141
$O7 - H1W \cdot \cdot \cdot O3^{v}$	0.83	2.18	2.911 (5)	146
$O8-H3W \cdot \cdot \cdot O2^{vi}$	0.83	2.06	2.840 (4)	157
$O8-H4W \cdot \cdot \cdot O2^{vii}$	0.83	2.04	2.788 (4)	150
$C15-H15\cdots O8^{vi}$	0.93	2.42	3.339 (5)	169

Symmetry codes: (ii) -x + 1, -y, -z; (iii) -x + 1, -y, -z + 1; (iv) x - 1, y - 1, z; (v) -x, -y, -z; (vi) -x + 1, -y + 1, -z; (vii) x + 1, y + 1, z.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Financial support by the Science Fund of Henan Province for Distinguished Young Scholars (No. 074100510005) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2047).

References

- Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Li, X.-H. & Yang, S.-Z. (2004). Acta Cryst. C60, m423–m425.
- Mahjoub, A. R. & Morsali, A. (2002). Polyhedron, 21, 1223-1227.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853– 1867.
- Xuan, X.-P. & Zhao, P.-Z. (2007). Acta Cryst. E63, m2678.

Zhu, N.-W., An, P. & Wang, X.-Z. (2004). Z. Kristallogr. New Cryst. Struct. 219, 271–272.

Acta Cryst. (2008). E64, m152-m153 [doi:10.1107/S1600536807065075]

Bis(μ -3-hydroxybenzoato- $\kappa^3 O, O': O$)bis[aqua(3-hydroxybenzoato- $\kappa^2 O, O'$)(1,10-phenanthroline- $\kappa^2 N, N'$)lead(II)] monohydrate

X.-P. Xuan, P.-Z. Zhao and S.-X. Zhang

Comment

Lead(II) is capable of exhibiting a variable coordination number and geometry with or without a stereochemically active lone pair of electrons (Shimoni-Livny *et al.* 1998). Among such compounds, a number of centrosymmetric dinuclear lead(II) compounds with 1,10-phenanthroline (phen) and oxygen donor ligands have been structurally characterized (Li & Yang, 2004, Mahjoub & Morsali 2002, Zhu *et al.* 2004). Recently, we obtained the title lead(II) complex, by reaction of lead acetate, 3-hydroxybenzoate acid, sodium hydroxide and in ethanol/water mixtures. The resulting complex is different to the polymeric chain-structure we previously reported using 2-hydroxybenzoate acid instead of 3-hydroxybenzoate acid (Xuan *et al.* 2007).

The crystal structure of the title compound consists of dimeric units of $[Pb(C_7H_5O_3)_2(C_{12}H_8N_2)(H_2O)]$, related by a crystallographic inversion centre (Fig. 1), and an uncoordinated (disordered) water molecule. Each lead atom is chelated by the two N atoms of 1,10-phenanthroline (phen) with Pb—N distances of 2.551 (2), and 2.583 (3) Å, and five carbonyl O atoms of 3-hydroxyl-benzoate anions, and is coordinated by the O atom of one water molecule. The shortest Pb—O distance is 2.472 (2) Å, and the longest is 2.914 (4) Å. The weak Pb—O bridging interactions form a four-membered Pb₂O₂ quadrilateral with a Pb—Pb separation of 4.1712 (8) Å. The uncoordinated water molecule is disordered over two sites close to a crystallographic inversion centre.

In the presented structure, the crystal is stabilized by intermolecular O—H···O and C—H···O hydrogen bonding contacts (Table 1 and Figure 2) and by two kinds of π - π stacking interactions in the sequence of benzoate - phen - phen - benzoate. The centroid-centroid distances between Cg1(N1/C1-C4/C12) and Cg2 (C21-C26)[symmetry code: -x, -y, 1 - z] and between Cg1 and Cg3 (N1/C1-C4/C12) [symmetry code: -x, 1 - y, -z] are 3.552 (2) and 3.641 (2) Å, respectively.

Experimental

To a solution of 1,10-phenanthroline (0.0906 g, 0.5 mmol), 3-hydroxybenzoate acid(0.1394 g, 1 mmol) and sodium hydroxide (0.0185 g,0.5 mmol) in ethanol/water (*v*:*v*=1:1,20 ml) was added a solution of Pb(CH₃COO)₂.3H₂O (0.1903 g, 0.5 mmol) in distilled water (5 ml). The resulting solution was stirred for 5 h at 323 K and then a white precipitate was filtered. Block single crystals were obtained by slow evaporation of the filtrate after 2 d, one of which was selected for the X-ray experiment.

Refinement

The carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C \text{ aromatic})$. The hydroxyl H atoms were placed in calculated positions (O—H = 0.82 Å) and refined with free torsion angles to fit the electron density, with $U_{iso}(H) = 1.5 U_{eq}(O)$. The

solvent water is disordered over two sites close to a crystallographic inversion centre, thus the site occupation factors for O8 and H3W, H4W were set 1/2. The water H atoms were restraint at distances O—H = 0.83 Å with $U_{iso}(H) = 1.5U_{eq}(O)$, for both, the coordinated and uncoordinated water molecules.

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms. [Symmetry codes for atoms labelled a: -x, -y, 1 - z].

Fig. 2. The π - π interactions between the aromatic rings of the title compound.

Bis(μ -3-hydroxybenzoato- $\kappa^3 O, O':O$)bis[aqua(3-hydroxybenzoato- $\kappa^2 O, O'$)(1,10-phenanthroline- $\kappa^2 N, N'$)lead(II)] monohydrate

Crystal	data
Ciysiai	uuuu

$[Pb_{2}(C_{7}H_{5}O_{3})_{4}(C_{12}H_{8}N_{2})_{2}(H_{2}O)_{2}]\cdot H_{2}O$	Z = 1
$M_r = 1377.30$	$F_{000} = 666$
Triclinic, PT	$D_{\rm x} = 1.923 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 8.5639 (16) Å	Cell parameters from 5362 reflections
b = 12.152 (2) Å	$\theta = 2.4 - 27.5^{\circ}$
c = 12.979 (3) Å	$\mu = 7.15 \text{ mm}^{-1}$
$\alpha = 62.652 (1)^{\circ}$	T = 293 (2) K
$\beta = 82.762 \ (2)^{\circ}$	Block, yellow
$\gamma = 84.701 \ (2)^{\circ}$	$0.17 \times 0.15 \times 0.11 \text{ mm}$
V = 1189.2 (4) Å ³	

Data collection

Bruker SMART CCD area-detector diffractometer	4352 independent reflections
Radiation source: fine-focus sealed tube	4009 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 293(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
phi and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -10 \rightarrow 10$

$T_{\min} = 0.369, \ T_{\max} = 0.512$	$k = -14 \rightarrow 14$
8820 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.022$	H-atom parameters constrained
$wR(F^2) = 0.050$	$w = 1/[\sigma^2(F_o^2) + (0.0263P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
4352 reflections	$\Delta \rho_{max} = 1.06 \text{ e } \text{\AA}^{-3}$
333 parameters	$\Delta \rho_{min} = -0.72 \text{ e } \text{\AA}^{-3}$
12 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Pb1	0.062168 (13)	0.070072 (10)	0.321211 (9)	0.02816 (4)	
01	0.3051 (3)	0.1587 (2)	0.19470 (18)	0.0387 (6)	
O2	0.1526 (3)	0.0939 (2)	0.1109 (2)	0.0450 (6)	
O3	0.4628 (3)	0.1416 (3)	-0.2612 (2)	0.0520 (7)	
H3	0.5442	0.1402	-0.3015	0.078*	
O4	0.5876 (3)	-0.3747 (2)	0.8277 (2)	0.0480 (7)	
H4	0.6085	-0.3047	0.8146	0.072*	
05	0.2736 (3)	-0.1258 (2)	0.38683 (19)	0.0522 (7)	
O6	0.2135 (3)	-0.0679 (2)	0.5260 (2)	0.0434 (6)	
07	-0.1913 (5)	-0.0008 (4)	0.2362 (4)	0.1267 (16)	
H2W	-0.1381	-0.0498	0.2158	0.190*	
H1W	-0.2871	-0.0133	0.2430	0.190*	
N1	-0.0483 (3)	0.2875 (2)	0.1953 (2)	0.0306 (6)	
N2	0.1144 (3)	0.2374 (2)	0.3819 (2)	0.0307 (6)	
C1	-0.1321 (4)	0.3108 (3)	0.1076 (3)	0.0361 (8)	

U	U^{11} U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Atomic displaceme	ent parameters $(Å^2)$				
П 3 W	0.9574	0.9510	-0.0041	0.134*	0.50
П4W Ц2W	1.0384	1.0024	0.040/	0.154* 0.154*	0.50
	0.9880 (3)	0.9421 (3)	0.0575 (2)	0.103 (2)	0.50
H26	0.4332	-0.1888	0.6729	0.038*	0.50
C26	0.4352 (3)	-0.2600 (3)	0.6630 (2)	0.0314 (7)	
C25	0.5104 (4)	-0.3681 (3)	0.7388 (3)	0.0328 (7)	
H24	0.5493	-0.5500	0.7819	0.046*	
C24	0.5050 (4)	-0.4762 (3)	0.7280 (3)	0.0380 (8)	
H23	0.4334	-0.5467	0.6297	0.049*	
C23	0.4342 (4)	-0.4746 (3)	0.6377 (3)	0.0407 (9)	
H22	0.3189	-0.3653	0.4972	0.043*	
022	0.3647 (4)	-0.3663 (3)	0.5590 (3)	0.0362 (8)	
C21	0.3627(4)	-0.2582(3)	0.5717 (3)	0.0287 (7)	
C20	0.2779 (4)	-0.1430(3)	0.4891 (3)	0.0322 (7)	
П19 С20	0.2770 (4)	0.1420 (2)	0.0835	0.045*	
U19 U10	0.5784	0.1895 (3)	0.0204 (3)	0.03//(8)	
П18 С10	0.7/47	0.2245	-0.0030	0.030*	
	0.0748 (4)	0.2039 (3)	-0.0677(3)	0.0418 (9)	
П1/ С19	0.1213	0.1990	-0.2213	0.045	
U17	0.04/2 (4)	0.1880 (3)	-0.1020(3)	0.0338 (8)	
C10 C17	0.4984 (4)	0.13/3(3)	-0.1091(3)	0.0327(8)	
п15 С16	0.2814	0.118/	-0.0845	0.040^{-1}	
U15	0.3800 (4)	0.1410(3)	-0.0805 (3)	0.0354 (7)	
C14	0.4095(4)	0.1373(3)	0.0144(2)	0.0280(7)	
C13	0.2813(4)	0.1557(5)	0.1119(3)	0.0308 (7)	
C12	-0.0330(4)	0.3809 (3)	0.2230(3)	0.0295 (7)	
	0.0334(4)	0.3340 (3)	0.3214(3)	0.0289 (7)	
	0.2304	0.1554	0.3143	0.040	
	0.1931 (4)	0.2129 (3)	0.4/33 (3)	0.0300 (0)	
пу С10	0.2038	0.2013	0.3735 (2)	0.034	
U9 U0	0.2131 (4)	0.3020(3)	0.5105 (5)	0.0448 (9)	
поА	0.10//	0.4/99	0.4/18	0.035*	
	0.1538 (4)	0.4193 (3)	0.4492 (3)	0.0441 (9)	
C/	0.0/1/(4)	0.4497 (3)	0.3521 (3)	0.0378(8)	
H6	0.0203	0.6366	0.2999	0.05/*	
C6	0.0051 (5)	0.5725 (3)	0.2824 (3)	0.0478 (9)	
H5 C(-0.1212	0.6747	0.1508	0.058*	
65	-0.0782 (5)	0.5954 (3)	0.1930 (3)	0.0483 (10)	
C4	-0.1018(4)	0.5004 (3)	0.1615 (3)	0.0374(8)	
H3A	-0.2386	0.5968	0.0283	0.055*	
	-0.1904 (4)	0.5195 (3)	0.0703 (3)	0.0459 (10)	
H2	-0.2649	0.43/1	-0.0175	0.053*	
C2	-0.2063 (4)	0.4251 (3)	0.0427 (3)	0.0441 (9)	
HI	-0.1418	0.2470	0.0884	0.043*	
***	0.1.110	0.0450	0.0004	0.040*	

Pb1	0.03033 (7)	0.03078 (6)	0.02384 (6)	0.00001 (5)	-0.00074 (4)	-0.01346 (4)
01	0.0418 (13)	0.0503 (12)	0.0318 (11)	-0.0092 (11)	0.0047 (10)	-0.0258 (10)
O2	0.0358 (13)	0.0690 (15)	0.0427 (12)	-0.0154 (12)	0.0085 (10)	-0.0365 (11)
O3	0.0463 (14)	0.0861 (17)	0.0366 (12)	0.0002 (14)	-0.0001 (11)	-0.0404 (12)
O4	0.0576 (15)	0.0449 (13)	0.0401 (13)	-0.0025 (12)	-0.0190 (12)	-0.0144 (11)
O5	0.0574 (16)	0.0655 (16)	0.0298 (12)	0.0260 (13)	-0.0087 (11)	-0.0221 (11)
O6	0.0515 (14)	0.0408 (12)	0.0395 (12)	0.0126 (11)	-0.0056 (11)	-0.0218 (10)
O7	0.131 (3)	0.131 (3)	0.103 (3)	-0.056 (3)	-0.046 (2)	-0.022 (2)
N1	0.0349 (14)	0.0329 (13)	0.0244 (12)	-0.0006 (11)	-0.0032 (11)	-0.0134 (10)
N2	0.0330 (14)	0.0342 (13)	0.0273 (12)	-0.0009 (11)	-0.0040 (11)	-0.0159 (11)
C1	0.0363 (18)	0.0417 (17)	0.0321 (16)	-0.0016 (15)	-0.0064 (14)	-0.0174 (14)
C2	0.0355 (18)	0.056 (2)	0.0338 (17)	0.0024 (16)	-0.0093 (15)	-0.0136 (16)
C3	0.042 (2)	0.0385 (19)	0.0391 (19)	0.0104 (16)	-0.0059 (16)	-0.0042 (16)
C4	0.0339 (17)	0.0318 (16)	0.0377 (18)	0.0040 (14)	0.0045 (14)	-0.0110 (14)
C5	0.053 (2)	0.0311 (17)	0.056 (2)	0.0018 (16)	0.0011 (18)	-0.0178 (16)
C6	0.053 (2)	0.0379 (17)	0.062 (2)	-0.0040 (16)	0.0052 (19)	-0.0321 (16)
C7	0.0340 (18)	0.0421 (17)	0.0423 (18)	-0.0092 (14)	0.0076 (14)	-0.0248 (15)
C8	0.044 (2)	0.0540 (19)	0.0528 (19)	-0.0092 (16)	0.0033 (16)	-0.0403 (16)
C9	0.0399 (19)	0.066 (2)	0.0413 (18)	-0.0040 (17)	-0.0087 (15)	-0.0332 (17)
C10	0.0393 (18)	0.0449 (18)	0.0315 (16)	-0.0023 (15)	-0.0077 (14)	-0.0175 (14)
C11	0.0262 (15)	0.0340 (15)	0.0259 (14)	-0.0047 (13)	0.0056 (12)	-0.0143 (12)
C12	0.0252 (15)	0.0335 (15)	0.0272 (14)	-0.0019 (13)	0.0043 (12)	-0.0132 (13)
C13	0.0339 (17)	0.0332 (15)	0.0280 (15)	0.0006 (13)	-0.0014 (13)	-0.0169 (13)
C14	0.0308 (16)	0.0264 (14)	0.0255 (14)	-0.0002 (12)	0.0007 (12)	-0.0116 (12)
C15	0.0303 (16)	0.0347 (16)	0.0356 (16)	0.0043 (13)	-0.0066 (13)	-0.0164 (13)
C16	0.0411 (18)	0.0348 (16)	0.0232 (14)	0.0035 (14)	-0.0013 (13)	-0.0153 (13)
C17	0.0363 (18)	0.0410 (17)	0.0296 (15)	-0.0027 (14)	0.0079 (14)	-0.0180 (14)
C18	0.0264 (16)	0.058 (2)	0.0475 (19)	-0.0090 (15)	0.0015 (15)	-0.0297 (16)
C19	0.0385 (18)	0.0504 (18)	0.0347 (16)	-0.0089 (15)	0.0001 (14)	-0.0278 (14)
C20	0.0292 (16)	0.0397 (17)	0.0277 (15)	-0.0002 (14)	0.0016 (13)	-0.0166 (13)
C21	0.0268 (15)	0.0351 (15)	0.0258 (14)	-0.0024 (13)	0.0055 (12)	-0.0171 (12)
C22	0.0376 (18)	0.0427 (17)	0.0359 (16)	-0.0009 (15)	-0.0046 (14)	-0.0242 (14)
C23	0.049 (2)	0.0305 (16)	0.0469 (19)	-0.0009 (15)	-0.0002 (16)	-0.0221 (14)
C24	0.0401 (19)	0.0307 (16)	0.0395 (18)	0.0051 (14)	-0.0032 (15)	-0.0141 (14)
C25	0.0321 (16)	0.0363 (16)	0.0290 (15)	-0.0035 (14)	-0.0029 (13)	-0.0136 (13)
C26	0.0384 (18)	0.0300 (15)	0.0278 (15)	-0.0020 (13)	-0.0008 (13)	-0.0154 (12)
O8	0.086 (4)	0.127 (5)	0.137 (5)	-0.018 (4)	-0.024 (4)	-0.089 (4)

Geometric parameters (Å, °)

2.472 (2)	С5—Н5	0.9300
2.551 (2)	C6—C7	1.450 (5)
2.585 (3)	С6—Н6	0.9300
2.630 (2)	C7—C8	1.402 (5)
2.720 (2)	C7—C11	1.411 (5)
2.815 (2)	C8—C9	1.360 (5)
2.880 (2)	C8—H8A	0.9300
2.914 (4)	C9—C10	1.402 (5)
2.922 (3)	С9—Н9	0.9300
	2.472 (2) 2.551 (2) 2.585 (3) 2.630 (2) 2.720 (2) 2.815 (2) 2.880 (2) 2.914 (4) 2.922 (3)	2.472 (2) $C5-H5$ $2.551 (2)$ $C6-C7$ $2.585 (3)$ $C6-H6$ $2.630 (2)$ $C7-C8$ $2.720 (2)$ $C7-C11$ $2.815 (2)$ $C8-C9$ $2.880 (2)$ $C8-H8A$ $2.914 (4)$ $C9-C10$ $2.922 (3)$ $C9-H9$

Pb1—C20	3.133 (3)	C10—H10	0.9300
Pb1—Pb1 ⁱ	4.1712 (8)	C11—C12	1.445 (4)
O1—C13	1.272 (4)	C13—C14	1.507 (4)
O2—C13	1.258 (4)	C14—C19	1.387 (4)
O3—C16	1.369 (4)	C14—C15	1.388 (5)
O3—H3	0.82	C15—C16	1.383 (4)
O4—C25	1.368 (4)	С15—Н15	0.9300
O4—H4	0.82	C16—C17	1.386 (5)
O5—C20	1.250 (4)	C17—C18	1.378 (5)
O6—C20	1.268 (4)	С17—Н17	0.9300
O6—Pb1 ⁱ	2.880 (2)	C18—C19	1.379 (5)
O7—H2W	0.83	C18—H18	0.9300
O7—H1W	0.83	С19—Н19	0.9300
N1—C1	1.327 (4)	C20—C21	1.505 (4)
N1-C12	1.365 (4)	C21—C22	1.396 (5)
N2—C10	1.341 (4)	C21—C26	1.396 (4)
N2—C11	1.362 (4)	C22—C23	1.380 (4)
C1—C2	1.393 (5)	C22—H22	0.9300
C1—H1	0.9300	C23—C24	1.377 (5)
C2—C3	1.372 (6)	С23—Н23	0.9300
С2—Н2	0.9300	C24—C25	1.390 (5)
C3—C4	1.405 (5)	C24—H24	0.9300
С3—НЗА	0.9300	C25—C26	1.387 (4)
C4—C12	1.409 (4)	C26—H26	0.9300
C4—C5	1.427 (5)	O8—H4W	0.83
C5—C6	1.344 (6)	O8—H3W	0.83
O1—Pb1—N1	81.43 (8)	С2—С3—Н3А	119.7
O1—Pb1—N2	78.87 (8)	С4—С3—Н3А	119.7
N1—Pb1—N2	64.53 (8)	C3—C4—C12	117.3 (3)
O1—Pb1—O2	50.98 (7)	C3—C4—C5	123.2 (3)
N1—Pb1—O2	78.90 (8)	C12—C4—C5	119.4 (3)
N2—Pb1—O2	121.76 (8)	C6—C5—C4	121.3 (3)
O1—Pb1—O5	76.29 (8)	С6—С5—Н5	119.4
N1—Pb1—O5	157.21 (8)	C4—C5—H5	119.4
N2—Pb1—O5	114.84 (8)	C5—C6—C7	121.3 (4)
O2—Pb1—O5	83.37 (7)	С5—С6—Н6	119.3
O1—Pb1—O6	95.43 (7)	С7—С6—Н6	119.3
N1—Pb1—O6	141.71 (8)	C8—C7—C11	117.6 (3)
N2—Pb1—O6	77.37 (7)	C8—C7—C6	123.7 (3)
O2—Pb1—O6	127.92 (7)	C11—C7—C6	118.7 (3)
O5—Pb1—O6	47.03 (7)	C9—C8—C7	120.5 (3)
O1—Pb1—O6 ⁱ	154.52 (8)	C9—C8—H8A	119.8
N1—Pb1—O6 ⁱ	81.97 (7)	С7—С8—Н8А	119.8
N2—Pb1—O6 ⁱ	76.57 (8)	C8—C9—C10	118.7 (3)
O2—Pb1—O6 ⁱ	142.57 (7)	С8—С9—Н9	120.6
O5—Pb1—O6 ⁱ	120.61 (7)	С10—С9—Н9	120.6
06—Pb1—O6 ⁱ	85.82 (7)	N2-C10-C9	122.8 (3)

O1—Pb1—O7	121.36 (10)	N2—C10—H10	118.6
N1—Pb1—O7	82.17 (10)	С9—С10—Н10	118.6
N2—Pb1—O7	138.64 (12)	N2—C11—C7	122.0 (3)
O2—Pb1—O7	70.71 (11)	N2-C11-C12	118.5 (3)
O5—Pb1—O7	105.38 (11)	C7—C11—C12	119.5 (3)
O6—Pb1—O7	129.11 (9)	N1—C12—C4	122.0 (3)
O6 ⁱ —Pb1—O7	75.04 (11)	N1—C12—C11	118.3 (3)
O1—Pb1—C13	25.58 (8)	C4—C12—C11	119.7 (3)
N1—Pb1—C13	80.73 (8)	O2—C13—O1	120.8 (3)
N2—Pb1—C13	101.53 (9)	O2—C13—C14	119.6 (3)
O2—Pb1—C13	25.51 (8)	O1—C13—C14	119.6 (3)
O5—Pb1—C13	77.12 (8)	O2—C13—Pb1	64.14 (16)
O6—Pb1—C13	111.91 (8)	O1—C13—Pb1	57.02 (15)
O6 ⁱ —Pb1—C13	161.54 (8)	C14—C13—Pb1	172.4 (2)
O7—Pb1—C13	96.18 (11)	C19—C14—C15	119.5 (3)
O1—Pb1—C20	87.16 (8)	C19—C14—C13	120.5 (3)
N1—Pb1—C20	160.33 (9)	C15—C14—C13	120.0 (3)
N2—Pb1—C20	97.64 (8)	C16—C15—C14	120.6 (3)
O2—Pb1—C20	106.12 (8)	С16—С15—Н15	119.7
O5—Pb1—C20	23.32 (8)	C14—C15—H15	119.7
O6—Pb1—C20	23.85 (8)	O3—C16—C15	118.0 (3)
O6 ⁱ —Pb1—C20	102.71 (7)	O3—C16—C17	122.0 (3)
O7—Pb1—C20	117.50 (11)	C15—C16—C17	120.0 (3)
C13—Pb1—C20	95.75 (8)	C18—C17—C16	119.0 (3)
O1—Pb1—Pb1 ⁱ	133.40 (5)	C18—C17—H17	120.5
N1—Pb1—Pb1 ⁱ	115.68 (6)	C16—C17—H17	120.5
N2—Pb1—Pb1 ⁱ	72.07 (5)	C17—C18—C19	121.6 (3)
O2—Pb1—Pb1 ⁱ	164.35 (5)	C17—C18—H18	119.2
O5—Pb1—Pb1 ⁱ	83.78 (5)	C19—C18—H18	119.2
O6—Pb1—Pb1 ⁱ	43.51 (5)	C18—C19—C14	119.3 (3)
O6 ⁱ —Pb1—Pb1 ⁱ	42.31 (4)	C18—C19—H19	120.3
O7—Pb1—Pb1 ⁱ	104.33 (9)	C14—C19—H19	120.3
C13—Pb1—Pb1 ⁱ	155.04 (6)	O5—C20—O6	122.8 (3)
C20—Pb1—Pb1 ⁱ	62.27 (6)	O5—C20—C21	118.3 (3)
C13—O1—Pb1	97.40 (19)	O6—C20—C21	118.9 (3)
C13—O2—Pb1	90.36 (19)	O5—C20—Pb1	59.49 (17)
С16—О3—Н3	109.5	O6—C20—Pb1	63.89 (16)
C25—O4—H4	109.5	C21—C20—Pb1	171.4 (2)
C20—O5—Pb1	97.2 (2)	C22—C21—C26	119.4 (3)
C20—O6—Pb1	92.26 (18)	C22—C21—C20	119.4 (3)
C20—O6—Pb1 ⁱ	134.9 (2)	C26—C21—C20	121.2 (3)
Pb1—O6—Pb1 ⁱ	94.18 (7)	C23—C22—C21	120.2 (3)
Pb1—O7—H2W	97.5	C23—C22—H22	119.9
Pb1—O7—H1W	147.1	C21—C22—H22	119.9
H2W—O7—H1W	110.3	C24—C23—C22	120.3 (3)
C1—N1—C12	118.2 (3)	C24—C23—H23	119.9

C1—N1—Pb1	121.6 (2)	С22—С23—Н23	119.9
C12—N1—Pb1	119.89 (19)	C23—C24—C25	120.2 (3)
C10—N2—C11	118.3 (3)	C23—C24—H24	119.9
C10—N2—Pb1	122.9 (2)	C25—C24—H24	119.9
C11—N2—Pb1	118.7 (2)	O4—C25—C26	122.7 (3)
N1—C1—C2	123.9 (3)	O4—C25—C24	117.5 (3)
N1—C1—H1	118.1	C26—C25—C24	119.9 (3)
C2—C1—H1	118.1	C25—C26—C21	119.9 (3)
C3—C2—C1	118.0 (3)	С25—С26—Н26	120.0
С3—С2—Н2	121.0	C21—C26—H26	120.0
C1—C2—H2	121.0	H4W—O8—H3W	111.2
C2—C3—C4	120.6 (3)		
O2—Pb1—O1—C13	-3.8 (2)	O5—Pb1—O6 ⁱ —Pb1 ⁱ	33.16 (11)
O5—Pb1—O1—C13	88.8 (2)	$O5$ —Pb1— $O6^{i}$ — $C20^{i}$	130.5 (3)
O6—Pb1—O1—C13	132.1 (2)	O6—Pb1—O6 ⁱ —Pb1 ⁱ	0.00 (8)
O7—Pb1—O1—C13	-11.1 (3)	$O6$ —Pb1— $O6^{i}$ —C2 0^{i}	97.3 (3)
N1—Pb1—O1—C13	-86.4 (2)	$O7$ —Pb1— $O6^{i}$ —Pb1 ⁱ	132.41 (12)
N2—Pb1—O1—C13	-152.0 (2)	$O7-Pb1-O6^{i}-C20^{i}$	-130.3 (3)
O6 ⁱ —Pb1—O1—C13	-136.3 (2)	N1—Pb1—O6 ⁱ —Pb1 ⁱ	-143.59 (9)
O1—Pb1—O2—C13	3.8 (2)	$N1 - Pb1 - O6^{i} - C20^{i}$	-46.3 (3)
O5—Pb1—O2—C13	-73.9 (2)	N2—Pb1—O6 ⁱ —Pb1 ⁱ	-77.99 (8)
O6—Pb1—O2—C13	-57.7 (2)	N2—Pb1—O6 ⁱ —C20 ⁱ	19.3 (3)
O7—Pb1—O2—C13	177.2 (2)	Pb1—O1—C13—O2	7.2 (4)
N1—Pb1—O2—C13	91.7 (2)	Pb1	-172.1 (3)
N2—Pb1—O2—C13	41.3 (2)	Pb1—O2—C13—O1	-6.7 (4)
O6 ⁱ —Pb1—O2—C13	152.4 (2)	Pb1—O2—C13—C14	172.6 (3)
O1—Pb1—O5—C20	115.9 (2)	Pb1	-9.3 (4)
O2—Pb1—O5—C20	167.3 (2)	Pb1	170.4 (3)
O6—Pb1—O5—C20	4.8 (2)	Pb1—O6—C20—O5	8.9 (4)
O7—Pb1—O5—C20	-124.9 (2)	Pb1—O6—C20—C21	-170.8 (3)
N1—Pb1—O5—C20	128.3 (2)	Pb1 ⁱ —O6—C20—O5	107.1 (4)
N2—Pb1—O5—C20	45.3 (2)	Pb1 ⁱ —O6—C20—C21	-72.7 (4)
C13—Pb1—O5—C20	142.2 (2)	Pb1—N1—C1—C2	174.3 (3)
O6 ⁱ —Pb1—O5—C20	-43.4 (2)	C12—N1—C1—C2	-0.1 (5)
O1—Pb1—O6—C20	-70.3 (2)	Pb1—N1—C12—C4	-175.6 (2)
O1—Pb1—O6—Pb1 ⁱ	154.47 (8)	Pb1—N1—C12—C11	3.6 (4)
O2—Pb1—O6—C20	-27.0 (2)	C1—N1—C12—C4	-1.2 (5)
O2—Pb1—O6—Pb1 ⁱ	-162.22 (8)	C1—N1—C12—C11	178.1 (3)
O5—Pb1—O6—C20	-4.69 (19)	Pb1—N2—C10—C9	-176.0 (2)
O5—Pb1—O6—Pb1 ⁱ	-139.97 (12)	C11—N2—C10—C9	1.0 (5)
O7—Pb1—O6—C20	68.4 (2)	Pb1—N2—C11—C7	177.5 (2)
O7—Pb1—O6—Pb1 ⁱ	-66.84 (15)	Pb1—N2—C11—C12	-1.9 (4)
N1—Pb1—O6—C20	-153.3 (2)	C10—N2—C11—C7	0.4 (5)
N1—Pb1—O6—Pb1 ⁱ	71.43 (13)	C10—N2—C11—C12	-179.1 (3)
N2—Pb1—O6—C20	-147.6 (2)	N1—C1—C2—C3	0.7 (5)

N2—Pb1—O6—Pb1 ⁱ	77.17 (8)	C1—C2—C3—C4	-0.1 (5)
C13—Pb1—O6—C20	-50.1 (2)	C2—C3—C4—C5	178.7 (3)
C13—Pb1—O6—Pb1 ⁱ	174.66 (9)	C2—C3—C4—C12	-1.1 (5)
O6 ⁱ —Pb1—O6—C20	135.3 (2)	C3—C4—C5—C6	178.7 (4)
O6 ⁱ —Pb1—O6—Pb1 ⁱ	0.00 (8)	C12—C4—C5—C6	-1.4 (6)
O1—Pb1—N1—C1	100.8 (2)	C3-C4-C12-N1	1.8 (5)
O1—Pb1—N1—C12	-84.9 (2)	C3—C4—C12—C11	-177.5 (3)
O2—Pb1—N1—C1	49.1 (2)	C5-C4-C12-N1	-178.1 (3)
O2—Pb1—N1—C12	-136.6 (2)	C5-C4-C12-C11	2.7 (5)
O5—Pb1—N1—C1	88.7 (3)	C4—C5—C6—C7	-1.3 (6)
O5—Pb1—N1—C12	-97.1 (3)	C5—C6—C7—C8	-177.2 (4)
O6—Pb1—N1—C1	-171.3 (2)	C5-C6-C7-C11	2.7 (6)
O6—Pb1—N1—C12	3.0 (3)	C6—C7—C8—C9	-180.0 (3)
O7—Pb1—N1—C1	-22.7 (3)	C11—C7—C8—C9	0.1 (5)
O7—Pb1—N1—C12	151.6 (2)	C6-C7-C11-N2	179.2 (3)
N2—Pb1—N1—C1	-177.5 (3)	C6-C7-C11-C12	-1.4 (5)
N2—Pb1—N1—C12	-3.2 (2)	C8—C7—C11—N2	-0.9 (5)
C13—Pb1—N1—C1	75.0 (2)	C8—C7—C11—C12	178.6 (3)
C13—Pb1—N1—C12	-110.8 (2)	C7—C8—C9—C10	1.2 (5)
O6 ⁱ —Pb1—N1—C1	-98.6 (2)	C8—C9—C10—N2	-1.8 (5)
O6 ⁱ —Pb1—N1—C12	75.7 (2)	N2-C11-C12-N1	-1.1 (5)
O1—Pb1—N2—C10	-94.7 (2)	N2-C11-C12-C4	178.2 (3)
O1—Pb1—N2—C11	88.3 (2)	C7—C11—C12—N1	179.5 (3)
O2—Pb1—N2—C10	-123.5 (2)	C7—C11—C12—C4	-1.3 (5)
O2—Pb1—N2—C11	59.5 (2)	O1-C13-C14-C15	-175.4 (3)
O5—Pb1—N2—C10	-25.6 (3)	O1—C13—C14—C19	6.8 (5)
O5—Pb1—N2—C11	157.4 (2)	O2-C13-C14-C15	5.3 (5)
O6—Pb1—N2—C10	3.5 (2)	O2-C13-C14-C19	-172.5 (3)
O6—Pb1—N2—C11	-173.5 (2)	C13-C14-C15-C16	-178.4 (3)
O7—Pb1—N2—C10	139.9 (3)	C19—C14—C15—C16	-0.5 (6)
O7—Pb1—N2—C11	-37.1 (3)	C13-C14-C19-C18	177.4 (3)
N1—Pb1—N2—C10	179.6 (3)	C15-C14-C19-C18	-0.5 (6)
N1—Pb1—N2—C11	2.6 (2)	C14—C15—C16—O3	-179.2 (4)
C13—Pb1—N2—C10	-106.6 (2)	C14—C15—C16—C17	1.1 (6)
C13—Pb1—N2—C11	76.4 (2)	O3—C16—C17—C18	179.6 (4)
O6 ⁱ —Pb1—N2—C10	92.2 (2)	C15-C16-C17-C18	-0.7 (6)
O6 ⁱ —Pb1—N2—C11	-84.8 (2)	C16—C17—C18—C19	-0.3 (6)
O1—Pb1—C13—O2	-173.1 (4)	C17—C18—C19—C14	0.9 (6)
O2—Pb1—C13—O1	173.1 (4)	O5—C20—C21—C22	-31.7 (5)
O5—Pb1—C13—O1	-85.1 (2)	O5-C20-C21-C26	150.3 (3)
O5—Pb1—C13—O2	101.8 (2)	O6—C20—C21—C22	148.0 (3)
O6—Pb1—C13—O1	-52.8 (2)	O6—C20—C21—C26	-30.0 (5)
O6—Pb1—C13—O2	134.1 (2)	C20—C21—C22—C23	-176.4 (3)
O7—Pb1—C13—O1	170.5 (2)	C26—C21—C22—C23	1.6 (5)
O7—Pb1—C13—O2	-2.6 (2)	C20—C21—C26—C25	179.0 (3)
N1—Pb1—C13—O1	89.5 (2)	C22—C21—C26—C25	1.0 (5)
N1—Pb1—C13—O2	-83.6 (2)	C21—C22—C23—C24	-1.4 (5)

28 1 (2)	C^{22} C^{22} C^{24} C^{24}	725	1 ((5)
20.1(2)	$C_{22} - C_{23} - C_{24} - C_{24}$		-1.6(5)
-145.1 (2)	C23—C24—C25—C	04	-177.6 (3)
-93.85 (17)	C23—C24—C25—C	226	4.3 (5)
3.5 (4)	O4—C25—C26—C2	21	178.0 (3)
156.67 (10)	C24—C25—C26—C	221	-4.0 (5)
-106.0 (3)			
<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
0.82	1.84	2.658 (3)	176
0.82	1.93	2.738 (3)	167
0.83	2.24	2.932 (6)	141
0.83	2.18	2.911 (5)	146
0.83	2.06	2.840 (4)	157
0.83	2.04	2.788 (4)	150
0.93	2.42	3.339 (5)	169
	$\begin{array}{c} 28.1 (2) \\ -145.1 (2) \\ -93.85 (17) \\ 3.5 (4) \\ 156.67 (10) \\ -106.0 (3) \end{array}$ $\begin{array}{c} D - H \\ 0.82 \\ 0.82 \\ 0.83 \\ 0.83 \\ 0.83 \\ 0.83 \\ 0.83 \\ 0.93 \end{array}$	28.1(2) $C22-C23-C24-C25-C24-C25-C24-C25-C24-C25-C26-C25-C25-C26-C25-C25-C26-C25-C25-C26-C25-C25-C26-C25-C25-C25-C26-C25-C25-C25-C25-C25-C25-C25-C25-C25-C25$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Symmetry codes: (ii) -*x*+1, -*y*, -*z*; (iii) -*x*+1, -*y*, -*z*+1; (iv) *x*-1, *y*-1, *z*; (v) -*x*, -*y*, -*z*; (vi) -*x*+1, -*y*+1, -*z*; (vii) *x*+1, *y*+1, *z*.

Fig. 1

